Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
From the start, the airline industry has remarkably connected countries all over the world through rapid long-distance transportation, helping people overcome geographic barriers. Consequently, this has ushered in substantial economic growth, both nationally and internationally. The airline industry produces vast amounts of data, capturing a diverse set of information about their operations, including data related to passengers, freight, flights, and much more. Analyzing air travel data can advance the understanding of airline market dynamics, allowing companies to provide customized, efficient, and safe transportation services. Due to big data challenges in such a complex environment, the benefits of drawing insights from the air travel data in the airline industry have not yet been fully explored. This article aims to survey various components and corresponding proposed data analysis methodologies that have been identified as essential to the inner workings of the airline industry. We introduce existing data sources commonly used in the papers surveyed and summarize their availability. Finally, we discuss several potential research directions to better harness airline data in the future. We anticipate this study to be used as a comprehensive reference for both members of the airline industry and academic scholars with an interest in airline research.more » « less
-
null (Ed.)Convolutional Neural Network (CNN) models and many accessible large-scale public visual datasets have brought lots of research work to a remarkable new stage. Benefited from well-trained CNN models, small training datasets can learn comprehensive features by utilizing the preliminary features from transfer learning. However, the performance is not guaranteed when taking these features to construct a new model, as the differences always exist between the source and target domains. In this paper, we propose to build an Evolution Programming-based framework to address various challenges. This framework automates both the feature learning and model building processes. It first identifies the most valuable features from pre-trained models and then constructs a suitable model to understand the characteristic features for different tasks. Each model differs in numerous ways. Overall, the experimental results effectively reach optimal solutions, demonstrating that a time-consuming task could also be conducted by an automated process that exceeds the human ability.more » « less
-
null (Ed.)Abstract: Deep Learning (DL) has made significant changes to a large number of research areas in recent decades. For example, several astonishing Convolutional Neural Network (CNN) models have been built by researchers to fulfill image classification needs using large-scale visual datasets successfully. Transfer Learning (TL) makes use of those pre-trained models to ease the feature learning process for other target domains that contain a smaller amount of training data. Currently, there are numerous ways to utilize features generated by transfer learning. Pre-trained CNN models prepare mid-/high-level features to work for different targeting problem domains. In this paper, a DL feature and model selection framework based on evolutionary programming is proposed to solve the challenges in visual data classification. It automates the process of discovering and obtaining the most representative features generated by the pre-trained DL models for different classification tasks.more » « less
An official website of the United States government
